

Massimo Puoti
Marco Merli
Infectious Diseases Dept
ASST GRANDE OSPEDALE
METROPOLITANO NIGUARDA
MILANO

HCV: dove siamo le ultime evidenze dai congressi internazionali

Convegno Internazionale

GIORNATE INFETTIVOLOGICHE "LUIGI SACCO" 2019

MILANO, 28-29 MAGGIO 2019

OSPEDALE LUIGI SACCO POLO UNIVERSITARIO – ASST FATEBENEFRATELLI SACCO AULA MAGNA POLO LITA

Le ultime evidenze dei congressi

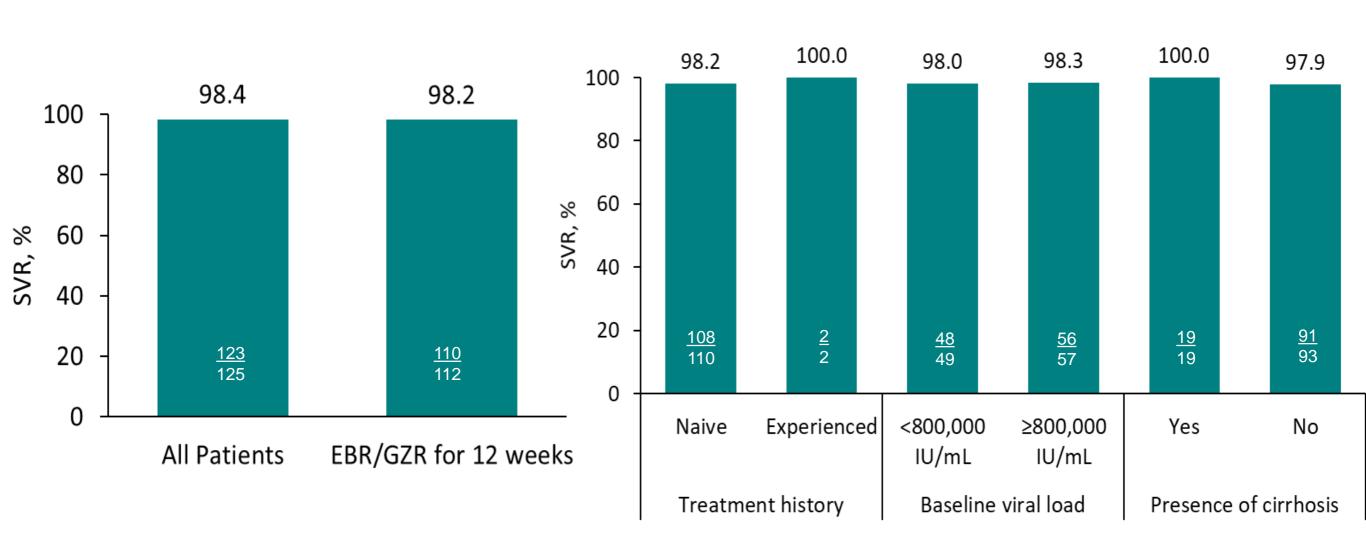
- Dati Real life
- Due opzioni nella pratica clinica
- Ottimizzazione: meglio meno visite?
- Off label: corto è bello ?
- Eterogeneità virale: ha un ruolo nell'epoca della taglia unica pangenotipica


Le ultime evidenze dei congressi

- Dati Real life
- Due opzioni nella pratica clinica
- Ottimizzazione: meglio meno visite?
- Off label: corto è bello ?
- Eterogeneità virale: ha un ruolo nell'epoca della taglia unica pangenotipica

Real World Studies Confirm the Efficacy of Grazoprevir/Elbasvir

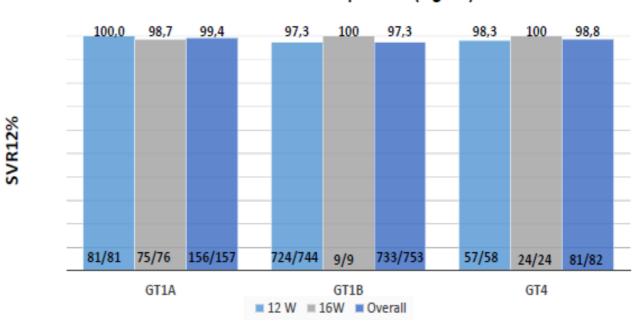
Patients on OST


Patients on HD

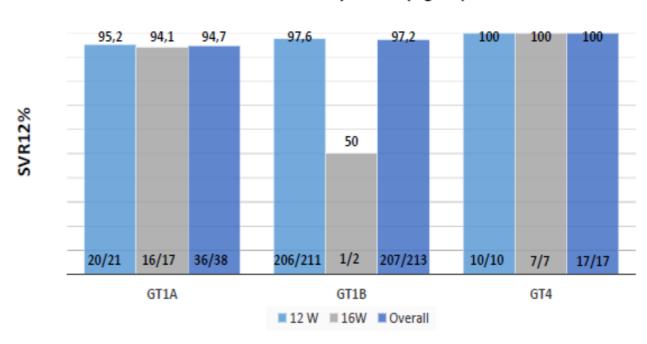
*Includes 9 patients with HCV GT1a/1b mixed infection and 11 patients with unknown HCV GT1 subtype

Real World Studies Confirm the Efficacy of Grazoprevir/Elbasvir

HCV genotype 4

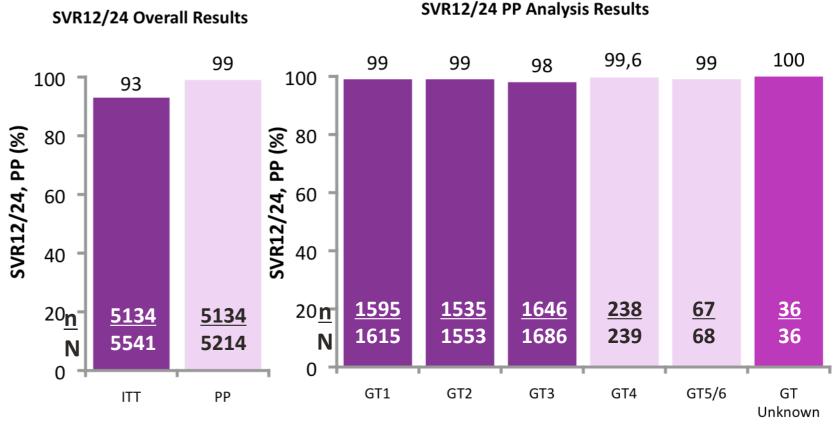


Real World Studies Confirm the Efficacy of Grazoprevir/Elbasvir in Italy


Univariate analysis of SVR12	according clinical and
virological features	

SVR12 Population n=1260	SVR12	95% CL	P-value
Gender Female Male	97.4% 97.8%	96-98.4 96-98.6	ns
Genotype G1a G1b G4	98.5% 97.4% 99%	95.7-99.5 96.2-99.2 94.7-99.8	ns
HIV-coinfection Present Absent	100% 97.5%	95.9-100 96.4-98.2	ns
Treatment duration 12W 16W	97.5% 98.6%	96.5-98.2 94.9-99.6	ns
CKD stage Stage 1 Stage 2 Stage 3 Stage 4 Stage 5	98% 97.5% 93.9% 100% 100%	96.4-98.9 95.4-98.6 88.4-96.9 70-100 70-100	ns
Cirrhosis stage F4 F<4	97.1% 97.7%	94.5-98.4 96.7-98.5	ns

Non-cirrhotic patients (Fig. 1a)


Cirrhotic patients (Fig. 1b)

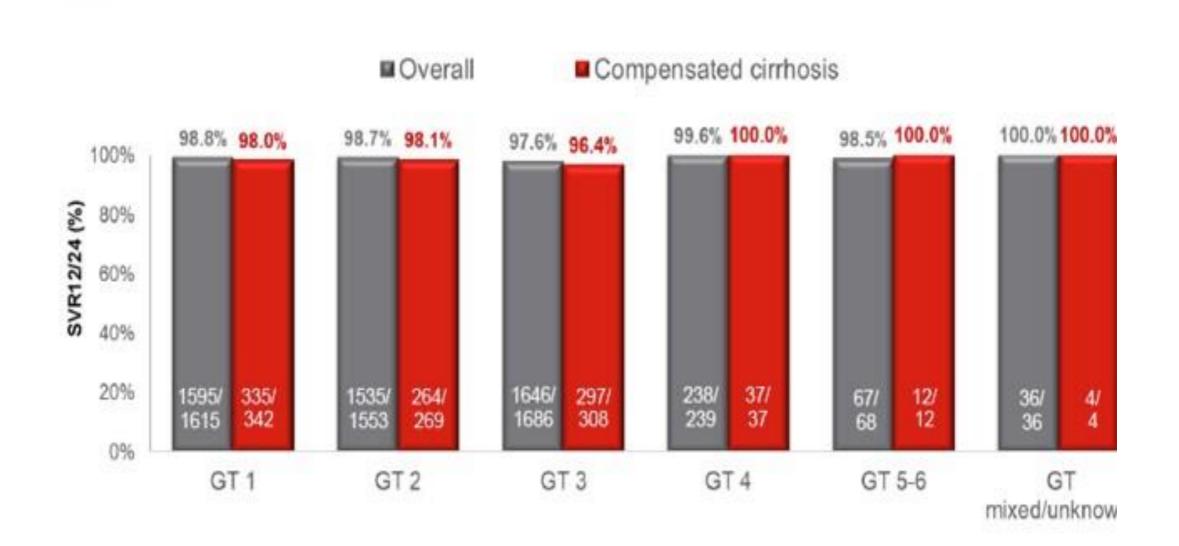
GS-03 Mangia: Global RWE of SOF/VEL as a Simple, Effective Regimen for the Treatment of Chronic HCV: Integrated Analysis of 12 Clinical Practice Cohorts

Real-world effectiveness study of SOF/VEL for 12 weeks as a treatment in a large heterogeneous population in the US, Canada, Germany, France, Spain, Italy and Greece (N = 5541)

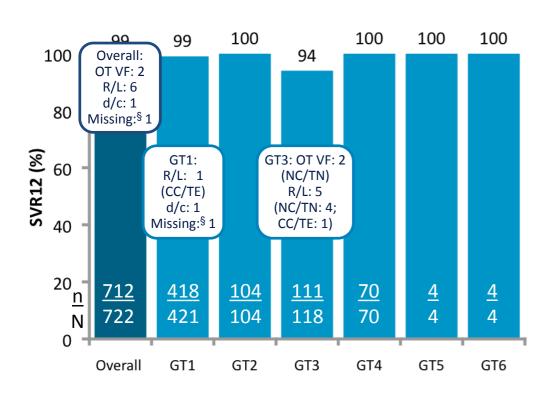
Baseline Characteristics	ITT N = 5340*
Mean age, years	54
Caucasian/White race, n (%)	3511 (73)
HIV/HCV co-infection, n (%)	196 (4)
Former or ongoing IV drug use, n (%)	706 (13)
PPI use at baseline, n (%)	287 (5)
Treatment experienced,† n (%)	660 (12)
Compensated cirrhosis, n (%)	1108 (21)
Fibrosis, % F0-F2/F3/F4/Unknown	54/13/21/ 12
HCV GT, % 1/2/3/4-6	30/30/33/

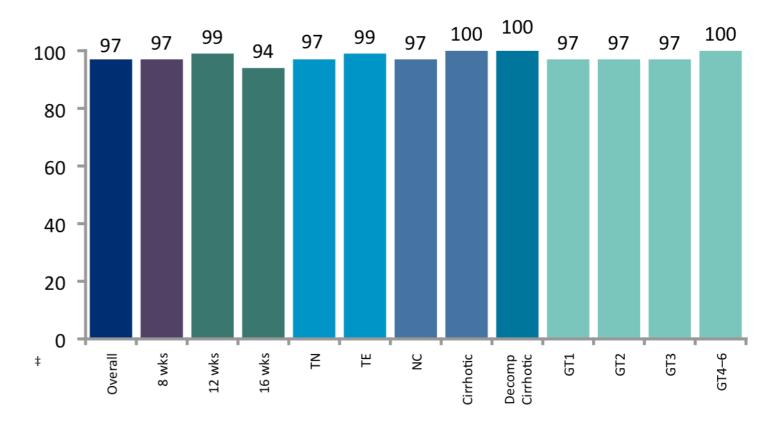
In a PP analysis, SVR12/24 rates were >96% across all patient subgroups

407 (7.3%) patients did not achieve SVR12/24


- 327 (5.9%) overall non-virologic failure rate
- 80 (1.4%) overall virologic failure rate

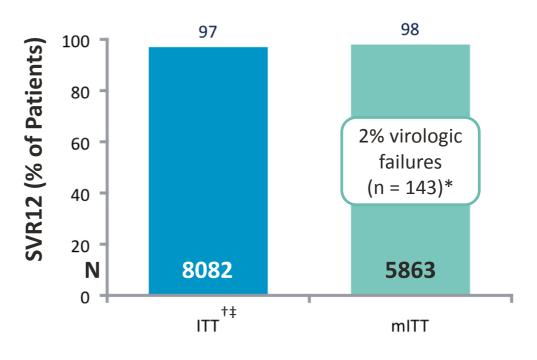
12 weeks of SOF/VEL is highly effective in a large, diverse population regardless of GT, fibrosis stage, treatment history[†] or patient characteristics


^{*}Total number of patients varies across characteristics due to missing data; † Treatment experience with pegIFN + RBV \pm PI. BT, breakthrough; d/c, discontinuation; GT, genotype; ITT, intention to treat; LTFU, lost to follow-up; PI, protease inhibitor; PPI, protein pump inhibitor; PP, per protocol.


Real World Studies Confirm the Efficacy of Sofosbuvir/Velpatasvir

SVR12/24 results by genotype and presence of cirrhosis (per protocol)

Real World Studies Confirm the Efficacy of Glecaprevir/Pibrentasvir

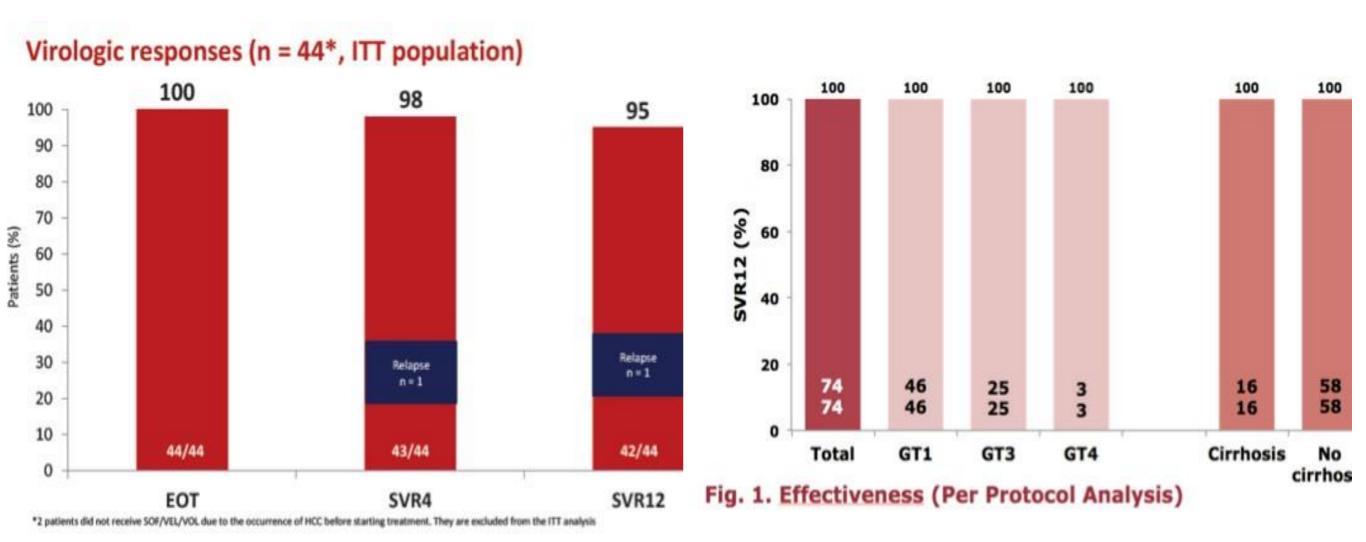


Pooled analysis to evaluate the real-world effectiveness and safety of G/P in HCV-infected TN or TE* patients ± CC in PMOS in Austria, Belgium, France, Greece, Israel, Italy, Poland, and Switzerland (N = 1276)

Real-world safety and efficacy analysis of HCV GT1–6-infected, TN/TE patients with or without compensated cirrhosis enrolled in HCV-TARGET and treated with 8-, 12-, or 16-weeks' G/P (N = 726) prior to 1 September 2018

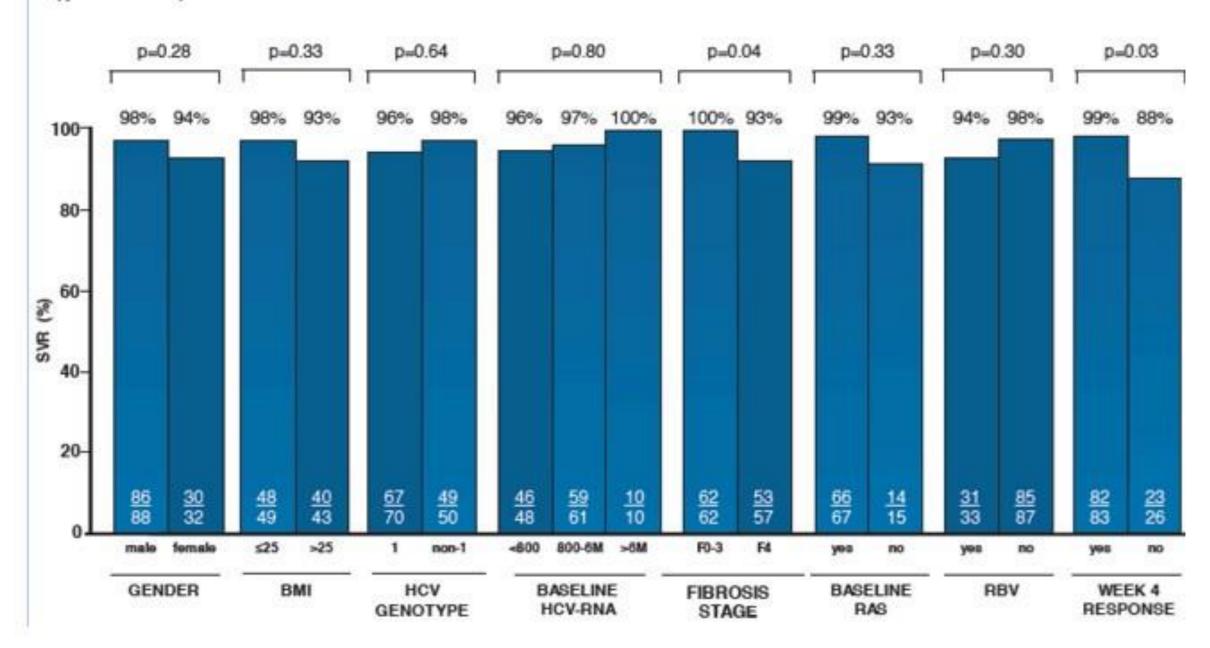
Real World Studies Confirm the Efficacy of Glecaprevir/Pibrentasvir

Cohort	Country	N
Austrian Real Life Cohort	Austria	116
Japan Registry	Japan	798
England NHS Registry	UK	773
German Registry	Germany	1242
Italian NAVIGATORE	Italy	723
Scottish HCV	Scotland	354
Spanish HepaC Cohort	Spain	1581
Trio	US	1131
VA Registry	US	1940
Japan Tamori	Japan	280
Japan Uemura	Japan	131
Kaiser Permanente	US	50
Italian MISTRAL	Italy	1177
Global G/P PMOS	Global	755
DAA-exp (Osawa)	Japan	30
DAA-exp (Akuta)	Japan	20



Safety	% (n/N)	Cohorts, N§
Any AE	13 (725/5685)	6
AEs leading to d/c	0.5 (24/4508)	5
Most common AEs	S	
Pruritus	5 (126/2698)	3
Fatigue	4 (146/3305)	4
Headache	3 (102/3759)	4

Real World Studies Confirm the Efficacy of Sofosbuvir/Velpatasvir/Voxilaprevir


French Cohort

German Cohort

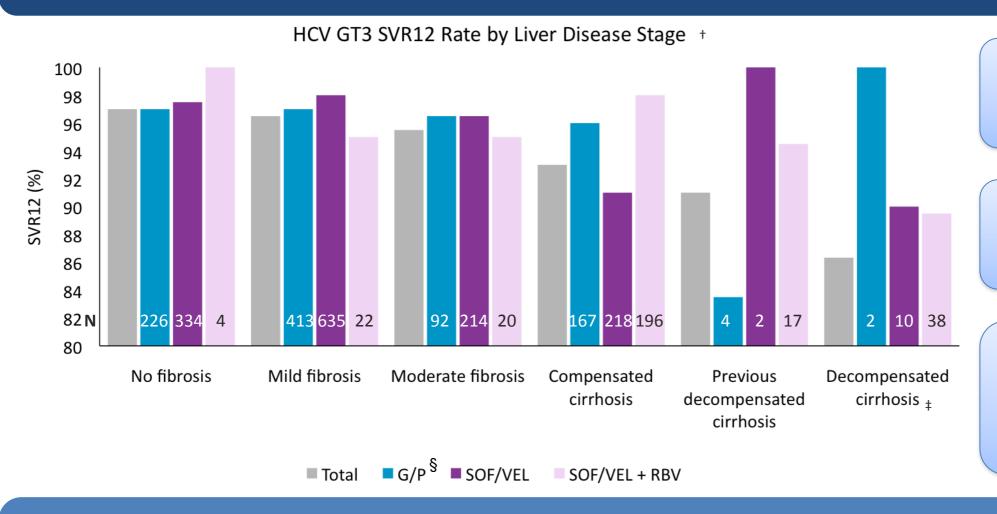
Real World Studies Confirm the Efficacy of Sofosbuvir/Velpatasvir/Voxilaprevir

Cirrhosis (p=0.03) and detectable HCV-RNA at treatment week 4 (p=0.03) were associated with treatment failure.

Le ultime evidenze dei congressi

- Dati Real life
- Due opzioni nella pratica clinica
- Ottimizzazione: meglio meno visite?
- Off label: corto è bello ?
- Eterogeneità virale: ha un ruolo nell'epoca della taglia unica pangenotipica

Curry: Clinical Practice Experience with Pan-genotypic Therapies G/P and SOF/VEL; Data from the TRIO Network


Baseline	G/P	SOF/VEL
Characteristics, n (%)	N = 1131	N = 777
Actual duration < 8 weeks 8 weeks 12 weeks > 12 weeks	10 (1) 844 (75) 237 (21) 40 (4)	25 (3) 15 (2) 733 (94) 4 (1)
HCV genotype 1 2 3 4–6	805 (71) 167 (15) 133 (12) 26 (2)	170 (22) 315 (41) 262 (34) 30 (4)
CKD Stage 1–3, n (%) CKD Stage 4–5, n (%)	336 (30) 74 (7)	287 (37) 10 (1)
Fibrosis No cirrhosis/no score 0-2 (no to moderate) 3 (severe) 4 (cirrhosis)	144 (13) 665 (59) 140 (12) 182 (16)	115 (15) 352 (45) 101 (13) 209 (27)

VF in the G/P group was associated with TE, cirrhosis, and VL>6MM (GT3)
For SOF-VEL, VF was associated with +RBV

LB-07 Drysdale: Effectiveness of Therapy in 16,756 DAA Treated People in England: High Response Rates in GT3 HCV Infection Regardless of Degree of Fibrosis, But RBV Improves Response in Cirrhosis

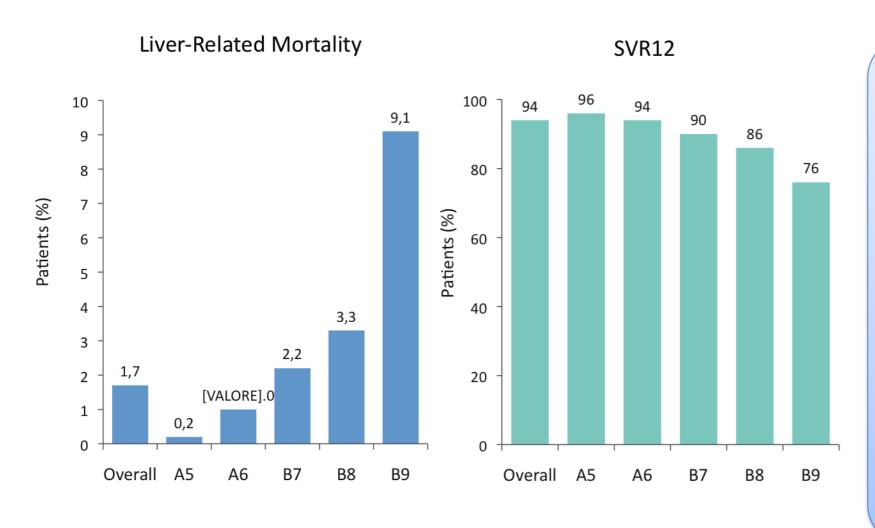
Meta-analysis of the England Hepatitis C Treatment Registry to determine the effects of liver disease stage on patient outcomes when using different DAA regimens to treat HCV GT3 (N=16,756*)

Overall PP SVR12 rate was 96% in all GTs

In patients with HCV GT3 SVR12 rate was 95%

High SVR rates with 12

weeks
of G/P were achieved in
patients with GT3 and
compensated cirrhosis


8 weeks of G/P and 12 weeks of SOF/VEL in patients with HCV GT3 and moderate fibrosis have similar efficacy. Addition of RBV to SOF/VEL significantly increases efficacy in patients with HCV GT3 and compensated cirrhosis

Drysdale K, et al. EASL 2019; oral presentation (LB-07).

^{*}Patients who received a valid treatment; [†]Graphical data has been estimated from the provided source presentation but no exact numbers are available; [‡]G/P is contraindicated in patients with severe hepatic impairment (Child-Pugh C); [§] Treatment durations with G/P were 8 weeks in patients with no fibrosis, mild fibrosis or moderate fibrosis and 12 weeks in patients with compensated cirrhosis, past decompensated cirrhosis or decompensated cirrhosis; Treatment durations were 12 weeks with SOF/VEL ± RBV for all stages of liver disease.

SAT-262, Paolo Russo: Long-Term Liver Function Outcome and Related Risk Factors in HCV Cirrhotic Patients Treated with DAA Therapy: Results from the Navigatore Platform in Veneto-Italy

Long-term, real-world, prospective study to determine liver function outcome and related risk factors in HCV cirrhotic patients initiating DAAs in Veneto-Italy between Dec 2014 and Sep 2017 (N = 3959)

- Predictors of CP improvement at both PTW12 and PTW48 were baseline INR
 1.5 (OR = 0.25/0.18), albumin > 3.5 g/dL (OR = 0.05/0.04) and bilirubin < 2.5 μmol/L (OR = 0.23/0.11) (P = 0.0001 for all)
- Predictors of CP worsening at PTW12 and PTW48 were PLT > 100 x 10³/mL (OR =0.56, P = 0.004) and bilirubin < 2.5 μmol/L (OR = 0.11, P = 0.0001)
- Complication of cirrhosis before DAA treatment is a risk factor for early CP worsening, and it must be taken into consideration before starting therapy

Child-Pugh Score

Most of the cirrhotic patients in the cohort were Child-Pugh A and remained stable after DAA therapy

THU-128, D'Ambrosio: Renal Safety in 3264 HCV Patients Treated with DAA-Based Regimens: Results from a Large Italian Real-Life Study

Retrospective analysis of changes in renal function from baseline to EOT and 12 weeks post SVR for patients treated with DAAs between Dec 2014 and Nov 2017* in the Italian NAVIGATORE-Lombardia cohort (N = 3264)

Baseline Characteristics	N = 3264
Male, n (%)	2116 (65)
Cirrhosis, n (%)	2208 (67)
HCV GT1, n (%)	1989 (61)
Diabetic, n/N (%)	437/2744 (16)
Median eGFR, mL/min/1.73 m ² , n (range)	88 (9–264)
CKD stage 4–5, n (%)	23 (0.7)
Treatment regimen, n (%): SOF-containing	2568 (79)

CKD Stage	1	2	3 a	3b	4/5
Decline in eGFR during Tx	Yes (<i>P</i> < 0.0001)	Yes (<i>P</i> = 0.0002)	_	_	_
Improvemen t in eGFR	_	_	Yes (<i>P</i> = <	Yes (<i>P</i> =	Yes (<i>P</i> = 0.024)

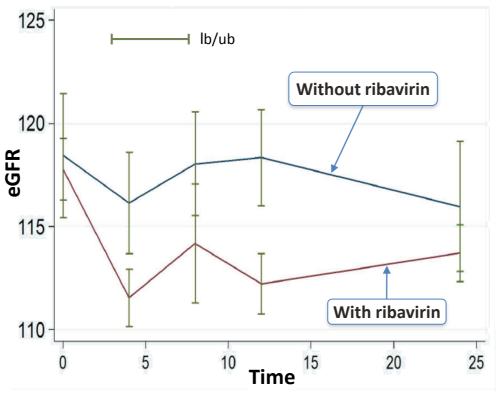
Changes in eGFR remained stable at SVR

Predictors of Worsening CKD at EOT:

Age > 75 years (P = 0.05) Preserved BL renal function (P < 0.0001) Diabetes (P = 0.04)

Predictors of Worsening CKD at SVR:

Age > 75 years (P = 0.005) Preserved BL renal function (P < 0.0001) Arterial hypertension (P = 0.0006) On-treatment renal worsening (P < 0.0001)


DAA treatment (primarily SOF- and RBV-based) led to a statistically significant decline in eGFR in patients with preserved baseline renal function that did not improve upon discontinuation of DAA therapy

SAT-218, Fouad: Impact of SOF-based Therapy on Renal Function Indices in Chronic Hepatitis C Patients who Achieved SVR

Evaluation of the changes in renal function indices during and after SOF-based therapy in chronic HCV patients who achieved SVR (N = 1004*)

Baseline Characteristics	N = 1004
Mean age, years (SD)	53 (10)
Male, %	56
Diabetes, %	25
Hypertension, %	20
Cirrhosis, %	40
Stage of renal function, % S1 S2 S3	75 22 3
Type of HCV treatment, % DCV + SOF DCV + SOF + RBV LDV/SOF LDV/SOF + RBV SOF + RBV SMV + SOF	12 33 3 3 34 15

Changes in eGFR by RBV use

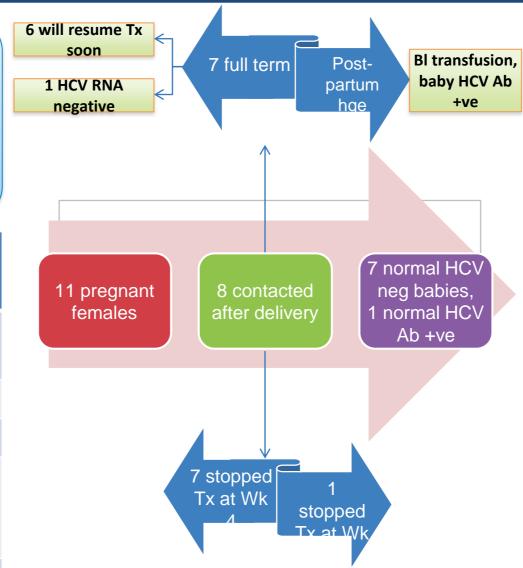
Median eGFR

	Baselin e	ЕОТ	SVR12
All patients	112.1	108.1 (<i>P</i> = 0.0003)	109.7 (<i>P</i> = 0.0002)
+ RBV	111.9	106.4 (<i>P</i> < 0.0001)	109.8 (<i>P</i> = 0.0001)
- RBV	No s	ignificant (change

- Remained unchanged in 15%
- Worsened at EOT vs baseline in 47%

SOF-based therapy is associated with decreased eGFR among HCV patients who receive RBV. Renal function should be monitored during and after SOF-based therapy which includes RBV

^{*} Patients who didn't achieve SVR, had HIV or HBV, decompensated cirrhosis, transplant recipients and patients with eGFR < 30 ml/min/1.73m2 before antiviral therapy were excluded eGFR, estimated glomerular filtration rate; EOT, end of treatment.


THU-137, El-Sayed: DAA Therapy in Women of Child Bearing Age: Accidental Conception During Therapy and Pregnancy Outcome

Retrospective study of the pregnancy outcome of women with chronic HCV who became pregnant during DAA therapy (N = 11) through the Egyptian national program for control of viral hepatitis

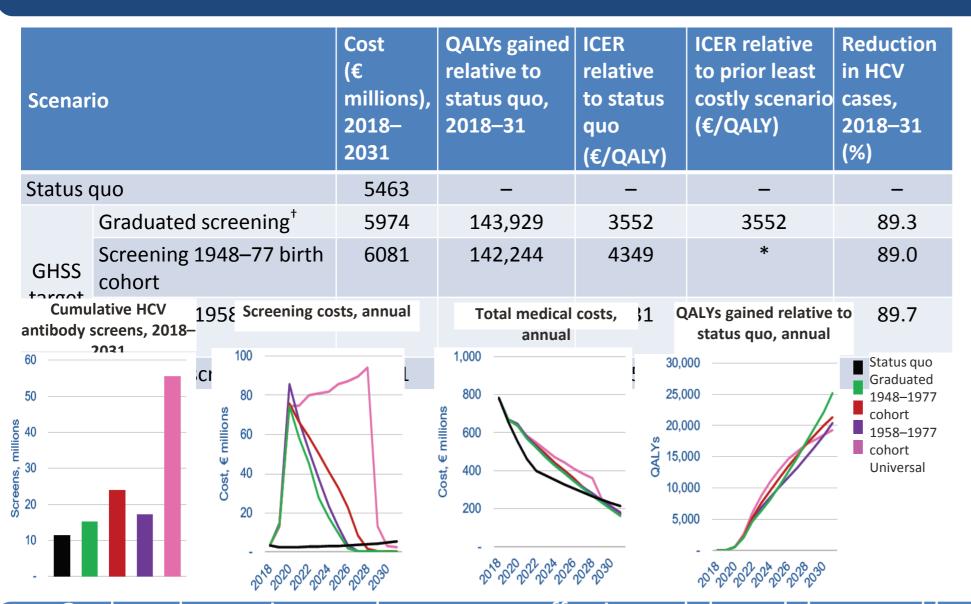
58,059 women were retrospectively assessed

- 93% treatment-naive
- 11% cirrhotic
- 81% treated with DCV + SOF (97% SVR)
- 11 became pregnant during therapy*

Baseline Characteristics	N = 11*
Age years, mean ± SD	29 ± 6
ALT IU/L, mean ± SD	49 ± 26
AST IU/L, mean ± SD	45 ± 23
HCV RNA IU/L, median (range)	441,500 (10,000 – 6,390,000)
Fib-4, mean ± SD	0.8 ± 0.3

Infants tested for HCV antibodies at 18 months old:

- n=7 negative
- n=1 positive with low viremia
- n=7 full-term
 non-interventional
 deliveries of normal weight
 newborns with no
 congenital abnormalities
- n=1 reported postpartum hemorrhage and received blood transfusion


Report of healthy infants with no congenital abnormalities despite accidental pregnancy during treatment with DCV + SOF. More data on the safety of DAAs during pregnancy is required to prevent the need to discontinue DAAs during pregnancy

Le ultime evidenze dei congressi

- Dati Real life
- Due opzioni nella pratica clinica
- Ottimizzazione: meglio meno visite?
- Off label: corto è bello ?
- Eterogeneità virale: ha un ruolo nell'epoca della taglia unica pangenotipica

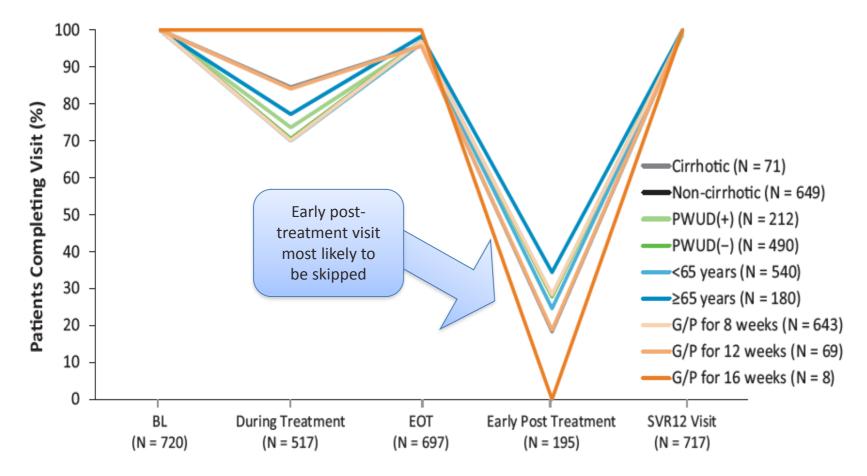
THU-397, Gamkrelidze: Screening Strategies for HCV Elimination in Italy

Modelling study assessing elimination scenarios under four screening strategies to determine if birth cohort-based screening would be cost effective in Italy between 2018–2031

- Graduated screening was the least costly scenario
- Relative to the status quo, graduated screening yielded the lowest ICER of €3552 per QALY
- Screening of the 1958– 77 birth cohort showed the biggest reduction in HCVinfected cases by 2031

Graduated screening was the most cost-effective and showed the second largest reduction in HCV disease burden by 2031. This strategy should be considered to aid Italy's efforts in achieving HCV elimination goals

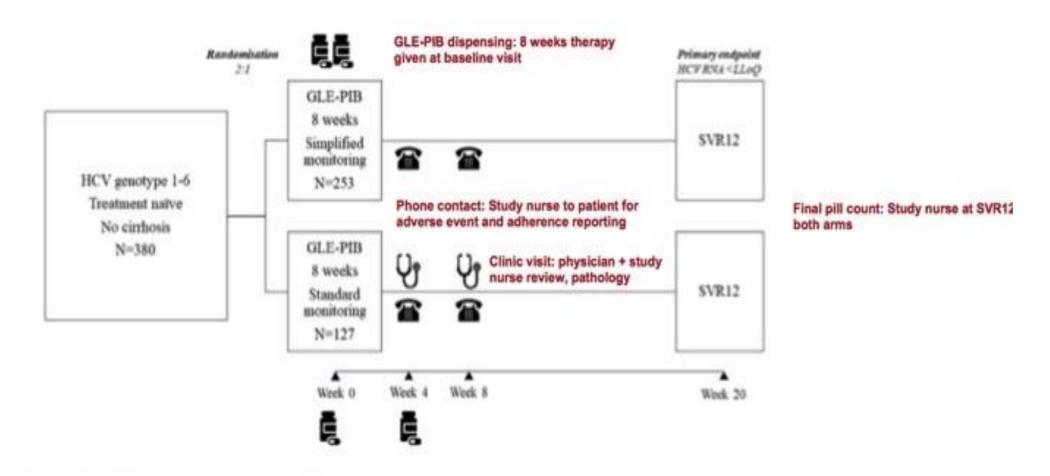
[†] Beginning with 1968–87 birth cohort in 2020, followed by 1948–67 cohort from 2030; * Strongly dominated scenario (costlier and less effective than graduated).


GHSS, Global Health Sector Strategy; ICER, incremental cost-effectiveness ratio; QALY, quality-adjusted life year.

Gamkrelidze I, et al. EASL 2019; poster presentation (THU-397).

What is the Optimal Treatment Monitoring Schedule?

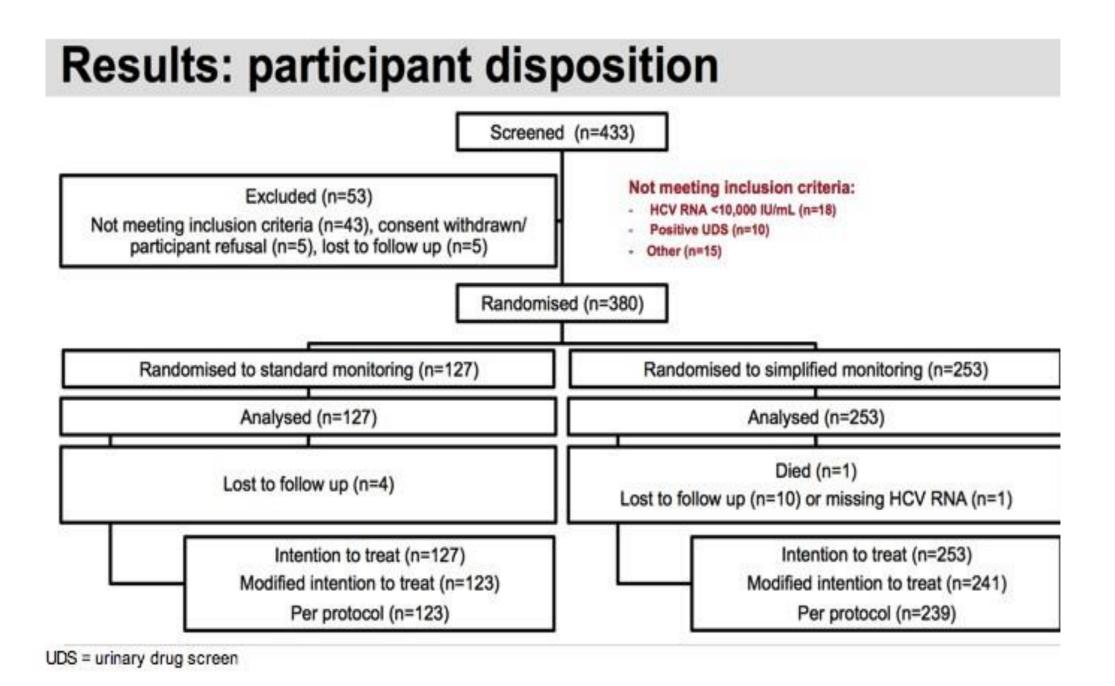
A pooled analysis of patients treated with G/P from PMOS in 6 different countries (Austria, Belgium, France, Israel, Italy, and Switzerland) assessed the impact of treatment on real-world HCRU and HRQoL (N = 720)


Figure 1. Percentage of Patients Attending Each Visit by Subgroup of Interest

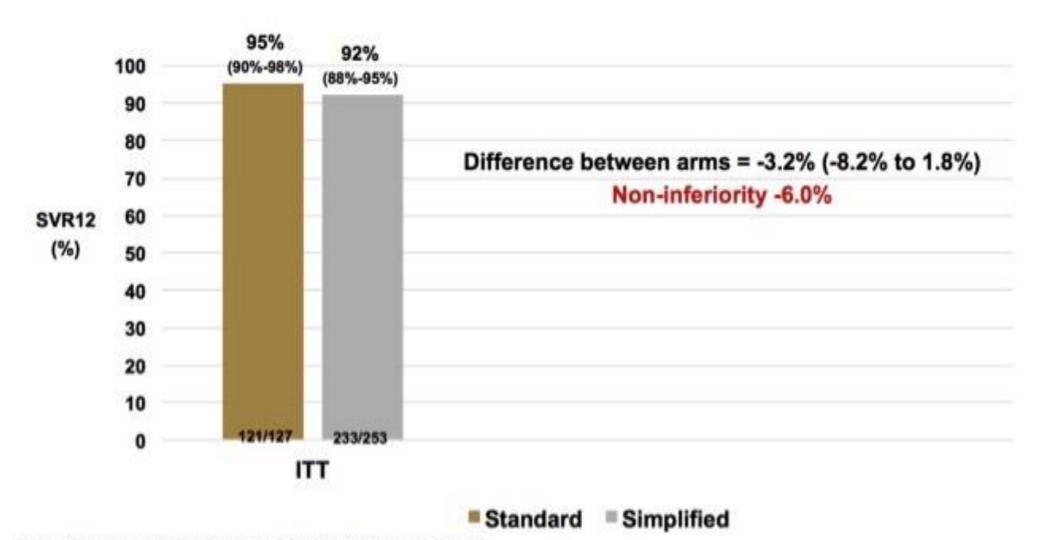
Overall SVR12 rate was 98.9 (712/720)

BL, baseline; EOT, end of treatment; G/P, glecaprevir/pibrentasvir; PWUD, person who uses drugs; SVR12, sustained virologic response at post-treatment Week 12.

Study design

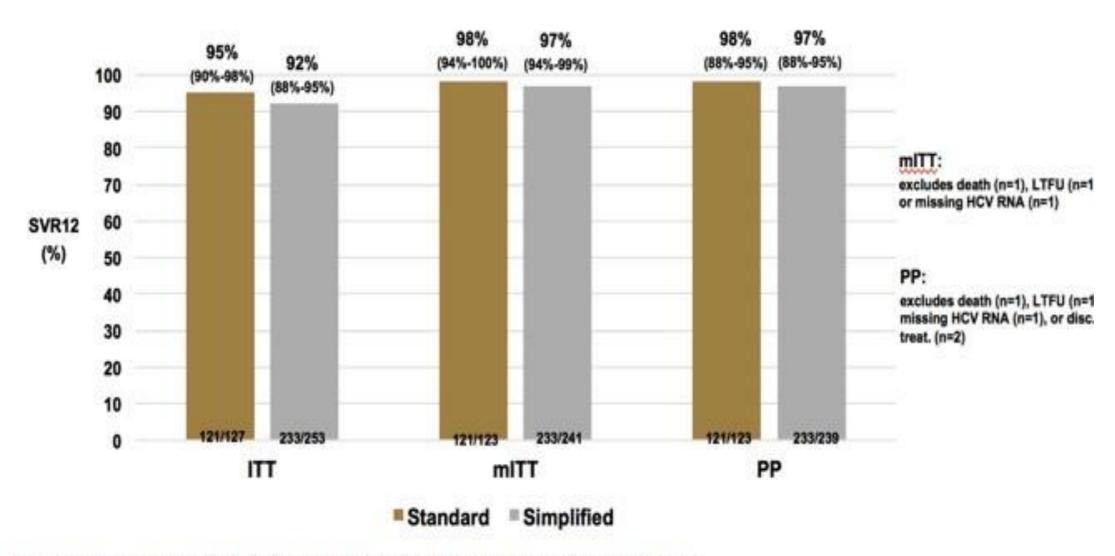


GLE-PIB = glecaprevir-pibrentasvir; SVR12 = sustained virological response 12 weeks post-treatment; LLoQ = low er limit of quantification


Study endpoints and statistics

Study endpoints and statistics

- Primary endpoint: SVR12 (HCV RNA <LLoQ, central lab) on ITT population
- Secondary endpoints:
 - SVR12 on modified ITT (excluded those without SVR12 follow-up) population
 - SVR12 on PP (completed treatment and SVR12 attended follow-up) population
 - Treatment adherence (>95/95 = treatment adherent)
 - Premature discontinuation and treatment completion
 - Adverse events, including serious adverse events
- Sample size and non-inferiority:
 - 375 planned for enrolment, based on expected SVR12 of 96% and 80% power to determine non-inferiority
 - Non-inferiority margin 6% (lower 95% confidence bound for difference between arms greater than -6%)



Results: SVR12

ITT = intention-to-treat; mITT = modified ITT; PP = per protocol

Results: SVR12

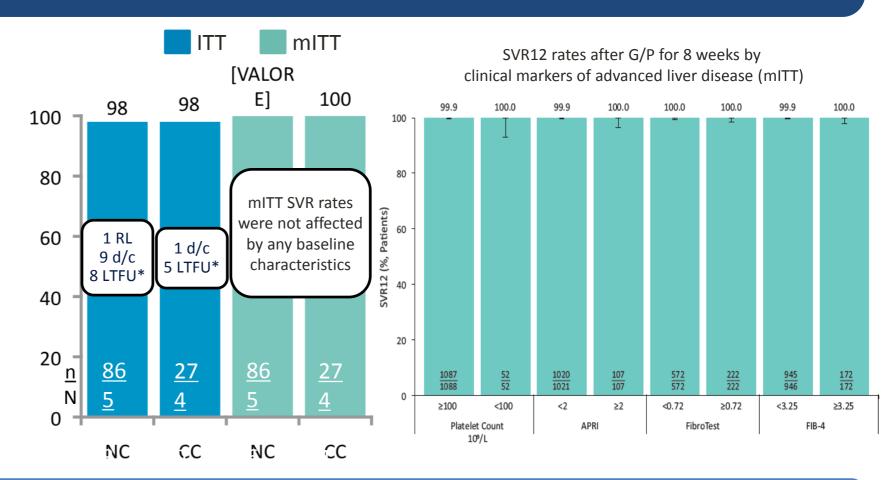
ITT = intention-to-treat; mITT = modified ITT; PP = per protocol; LTFU = lost to follow up

Results: treatment failure

	Standard (n=127)	Simplified (n=253)	Total (n=380)
Virological failure	2 (1.6%)	6 (2.4%)	8 (2.1%)
- On treatment	0		
- Post treatment	2	6	
Failure for other reasons			
- Death	0	1* (0.4%)	1 (0.3%)
- Discontinuation	0	2** (0.8%)	2 (0.5%)
- LTFU / missing HCV RNA	4 (3.1%)	11 (4.3%)	15 (3.9%)

^{*}Death: Lung adenocarcinoma after post-treatment week 4; **Discontinuations: both in week 1

LTFU = loss to follow up

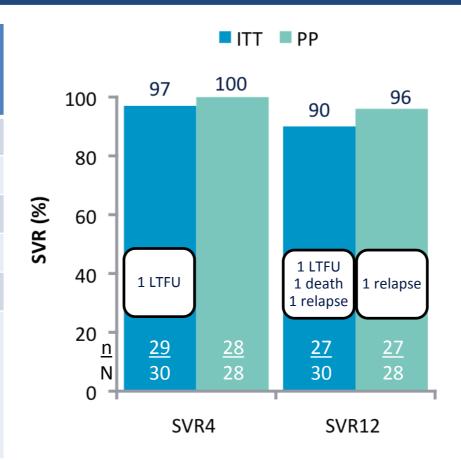

Le ultime evidenze dei congressi

- Dati Real life
- Due opzioni nella pratica clinica
- Ottimizzazione: meglio meno visite?
- Off label: corto è bello ?
- Eterogeneità virale: ha un ruolo nell'epoca della taglia unica pangenotipica

Efficacy & Safety of G/P Treatment for 8 Weeks in Treatment-Naive Patients with Chronic HCV Infection \pm Compensated Cirrhosis: Analysis of Data Pooled from Phase 2 & 3 Studies

A pooled analysis of pre- and post-approval studies evaluating the efficacy and safety of 8 weeks' G/P in TN patients with chronic HCV GT1, 2, or 4–6 infection without cirrhosis or with compensated cirrhosis (N = 1163)

Baseline Characteristics	NC (N = 883)	CC (N = 280)	
Male, n (%)	460 (52)	168 (60)	
White race, n (%)	697 (79)	223 (80)	
Median age, years	53	60	
HCV GT, n (%) 1 2 4 5/6	504 (57) 234 (27) 62 (7) 19 (2)/64 (7)	231 (83) 26 (9) 13 (5) 1 (< 1)/9 (3)	
Fibrosis stage, n/N (%) F0-F1 F2 F3 F4	577/880 (66) 42/880 (5) 66/880 (8) 0	0 0 0 280/280 (100)	
History of IDU, n/N (%)	323/882 (37)	72/280 (26)	

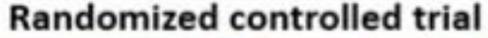

G/P for 8 weeks was highly efficacious and well tolerated in TN patients with chronic HCV GT1, 2, or 4–6 infection, regardless of cirrhosis status and baseline characteristics

^{*} Some patients were missing data because studies were ongoing. CC, compensated cirrhosis; d/c, discontinuation; IDU, injection drug use; ITT, intention-to-treat; LTFU, lost to follow-up; mITT, modified ITT; NC, non-cirrhotic; RL, relapse; TN, treatment-naive.

Shortened Duration Pan-genotypic Therapy with G/P for 6 Weeks among People with Acute and Recent HCV Infection

Open-label study to assess the efficacy of G/P for 6 weeks in patients with acute and recent HCV infection* in Australia, New Zealand, and England (N = 30)

Baseline Characteristics, n (%)	ITT population (N = 30)		
Male	30 (100)		
MSM	26 (87)		
HIV/HCV co-infection	23 (77)		
History of IDU	14 (47)		
HCV re-infection	4 (13)		
HCV GT 1 2 3 4	24 (80) 1 (3) 2 (7) 3 (10)		



- 1 patient with acute GT1a HCV had virologic failure, confirmed as relapse on sequencing
- Patient had baseline HCV
 RNA level of ~8 log₁₀ IU/mL

There was one treatmentemergent SAE[†] and no treatment-related SAEs

^{*} Recent infection defined as HCV infection of < 12 months' duration with a first positive anti-HCV antibody and/or HCV RNA within 6 months of enrollment and either acute clinical hepatitis within the past 12 months (jaundice or ALT > 10 × upper limit of normal) or documented anti-HCV antibody seroconversion within 18 months;

Ultra Short Treatment with G/P. Is it Possible?

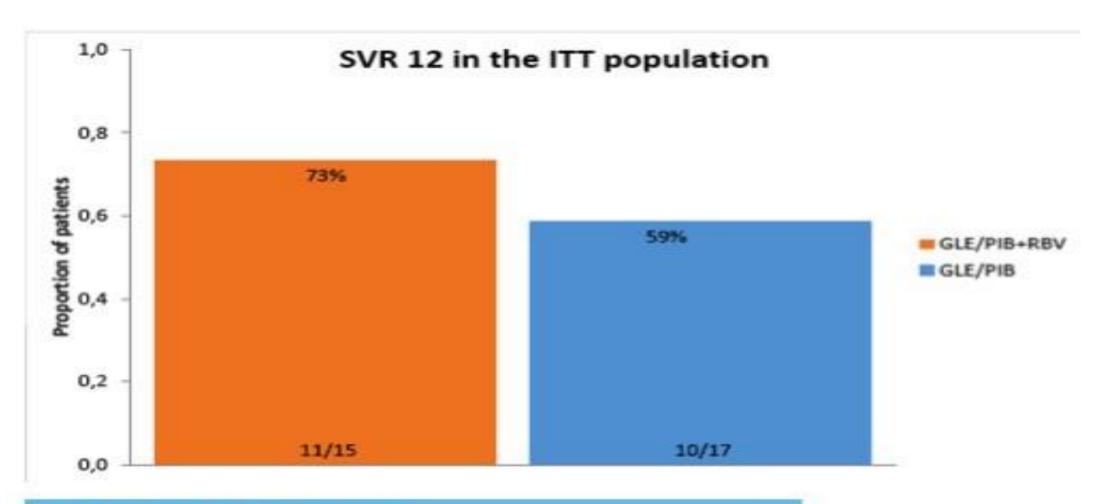
Glecaprevir 300mg Pibrentasvir 120mg 15 mg/kg ribavirin 4 weeks of treatment GLE/PIB q.d RBV 15 mg/kg bid

48 weeks Follow up

ARM 1B n=17
Glecaprevir 300mg
Pibrentasvir 120mg

4 weeks of treatment GLE/PIB q.d.

48 weeks Follow up


Main inclusion criteria

- Chronic hepatitis C of all genotypes
- Age 18-49
- Fibroscan <8 kPa or Liver biopsy with F0 or F1 (Metavir score)
- Naïve to all hepatitis C treatment
- Negative test for anti-HIV and HBsAg

Main exclusion criteria

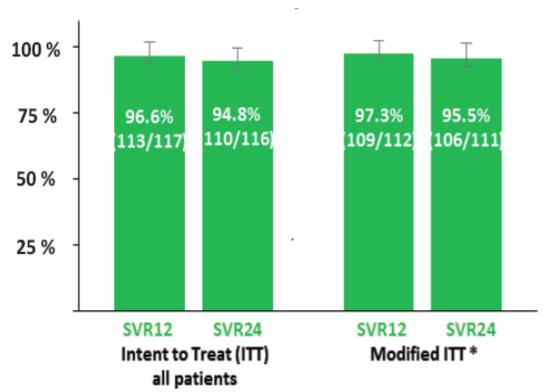
- Hemoglobin <7.0 mmol/l
- Any clinical or laboratory suspicion of cirrhosis
- Contraindication to treatment with study drugs

Ultra Short Treatment with G/P. Is it Possible?

RESULTS - CONTINUED

Viral recurrence

- · Viral recurrence was observed in 11 individuals.
- 91% (10/11) with viral recurrence were INFL3 non CC (not significant, p=0.12).


Madsen LW et al, EASL 2019

Elbasvir Grazoprevir in HCV G1b F0-F2 Study Results

Twelve weeks after EOT (SVR12) 97.3% (109/112) of patients had HCV RNA<LLOQ. Overall, 3 patients relapsed at week 12 and 2 other patients at week 24 post-treatment despite reaching SVR12.

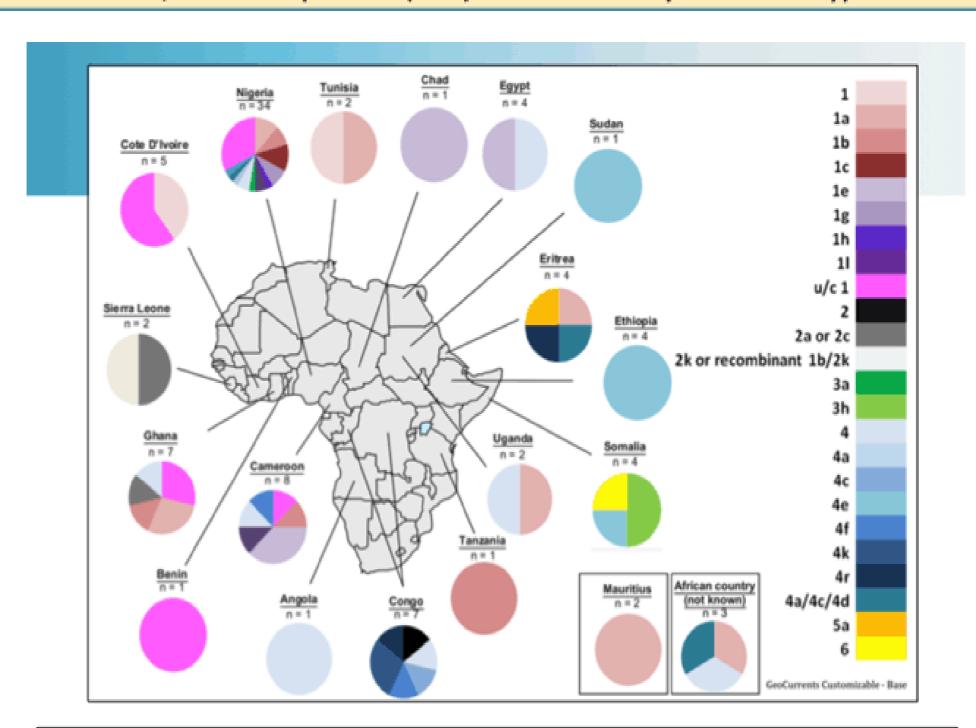
SVR24 results was 95.5% (106/111), one patient is lost to follow-up.

No adverse event grade III or IV was observed. The main adverse events with a frequency higher than 10% were asthenia (28%), headache (23%) and digestive disorders (13%).

^{*} Five patients were excluded from the analysis as they had a genotype non-1b

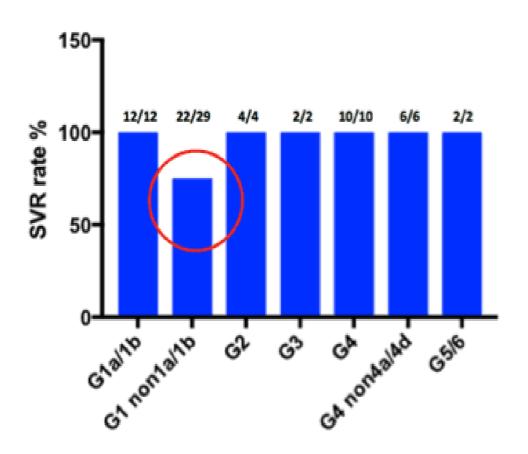
Characteristics of the 5 relapsers

	BMI Kg/m2	ALT ULN	Viral load IU/mL	Fibrosis Score	Date of relapse	RAS at baseline	RAS at relapse
Patient 1	31.4	1.6	14.000.000	6.4 kPa (F0-F1)	FU 12	Y93Hª	Y93Hª
Patient 2	25.5	0.7	16.437.573	5.1 kPa (F0-F1)	FU 4	L31M ^a Y93H ^a	L31Mª Y93Hª
Patient 3	22.5	1.25	8.250.000	4.9 kPa (F0-F1)	FU 12	Y93Hª	L31Mª Y93Hª
Patient 4	28.3	0.9	1 819 701	6.3 kPa (F0-F1)	FU 24	Y93Hª	Y93Hª L31Fª
Patient 5	20.3	0.5	5 736 800	4.3 kPa (F0-F1)	FU 24	Y56F ^b Y93H ^a	Y56F ^b R155W ^b L31V ^a Y93H ^a


^a NS5A RAS ^b NS3 RAS

Le ultime evidenze dei congressi

- Dati Real life
- Due opzioni nella pratica clinica
- Ottimizzazione: meglio meno visite?
- Off label: corto è bello ?
- Eterogeneità virale: ha un ruolo nell'epoca della taglia unica pangenotipica


47/91 African patients (52%) were infected by distinct subtypes

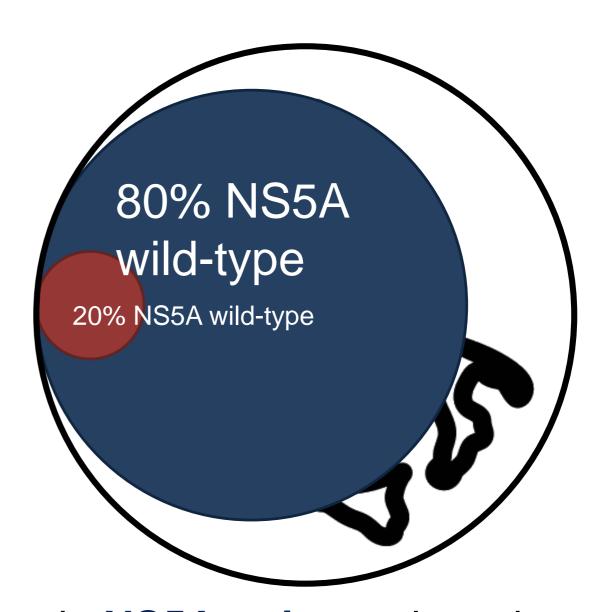
Geographical distribution of patients in the cohort and their HCV genotypes

There was a lower SVR rate in those with distinct subtypes of G1

Overall SVR rate of 75% in Distinct G1 Subtypes

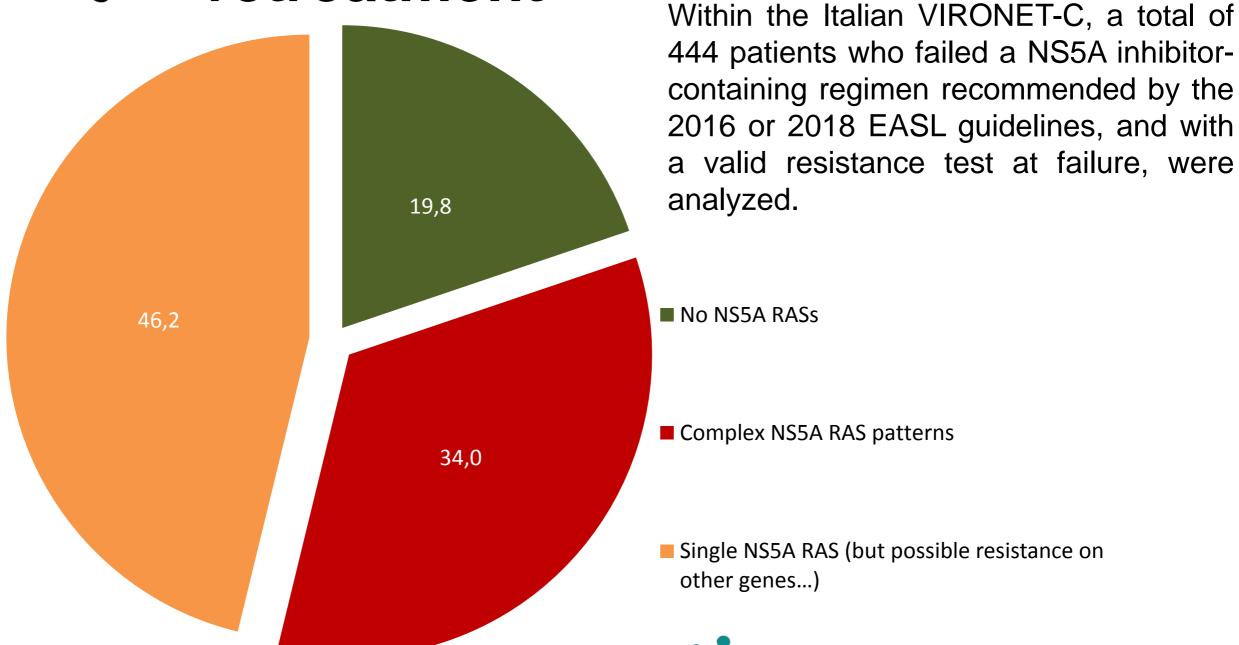
In univariate analysis, distinct genotype 1 and use of NS5A based regimen were associated with failure to achieve SVR

In distinct African subtypes, there was a high prevalence of NS5A polymorphisms at baseline


	NS5A												
	Subtype	K24	K26	M28	P29	Q30	L31	P32	538	H58	Q62	A92	Y93
Relapser	1L	G	K	М	P	Q	М	P	S	P	Q	A	Y
Relapser	u/c 1	K	K	М	P	Q	М	P	5	Р	Ę	A	Y
Relapser	u/c 1	K	K	L	P	Q	L	Р	5	Р	D	A	Y
Relapser	u/c 1	K	K	S	P	L	L	Р	5	P	P	A	Y
Relapser	1L	G	K	М	P	R	М	P	5	P	Q	A	Y
Relapser	1L	S	K	M	P	Q	М	Р	5	Р	Q	A	Y
SVR	1L	G	K	M	P	Q	L	P	S	P	Q	A	Y
SVR	u/c 1	K	K	М	Р	Q	М	Р	5	Р	D	Α	Y
SVR	u/c 1	K	K	М	P	Q	L	Р	S	P	D	Α	Y
SVR	u/c 1	Q	K	М	P	Q	L	P	5	Р	K	Α	Н
SVR	u/c 1	K	K	М	P	Q	L	Р	S	P	D	Α	Y
SVR	u/c 1	Q	K	L	Р	R	L	Р	S	P	Q	A	Y
SVR	u/c 1	K	K	М	Р	Q	L.	Р	S	P	Q	A	Y
SVR	u/c 1	Q	K	L	Р	L	М	Р	S	P	K	Α	Y
SVR	u/c 1	K	K	L	P	L	м	Р	S	P	Q	A	Y
SVR	u/c 1	K	K	М	Р	Q	L	Р	S	н	Ε	Α	Y
SVR	1e	Q	K	L	P	R	м	Р	S	P	Q	T	γ
SVR	u/c 1	K	K	V	Р	Q	L	Р	S	P	0	A	Y
SVR	u/c 1	K	K	٧	Р	T	L	Р	S	P	Q	A	N
SVR	1g	R	K	L	Р	Q	L	P	S	Р	Q	Α	F
SVR	u/c 1	S	K	М	P	Q	L	Р	S	S	Q	A	Y
SVR	u/c 1	К	K	М	Р	Q	L	Р	A	Р	D	A	Y

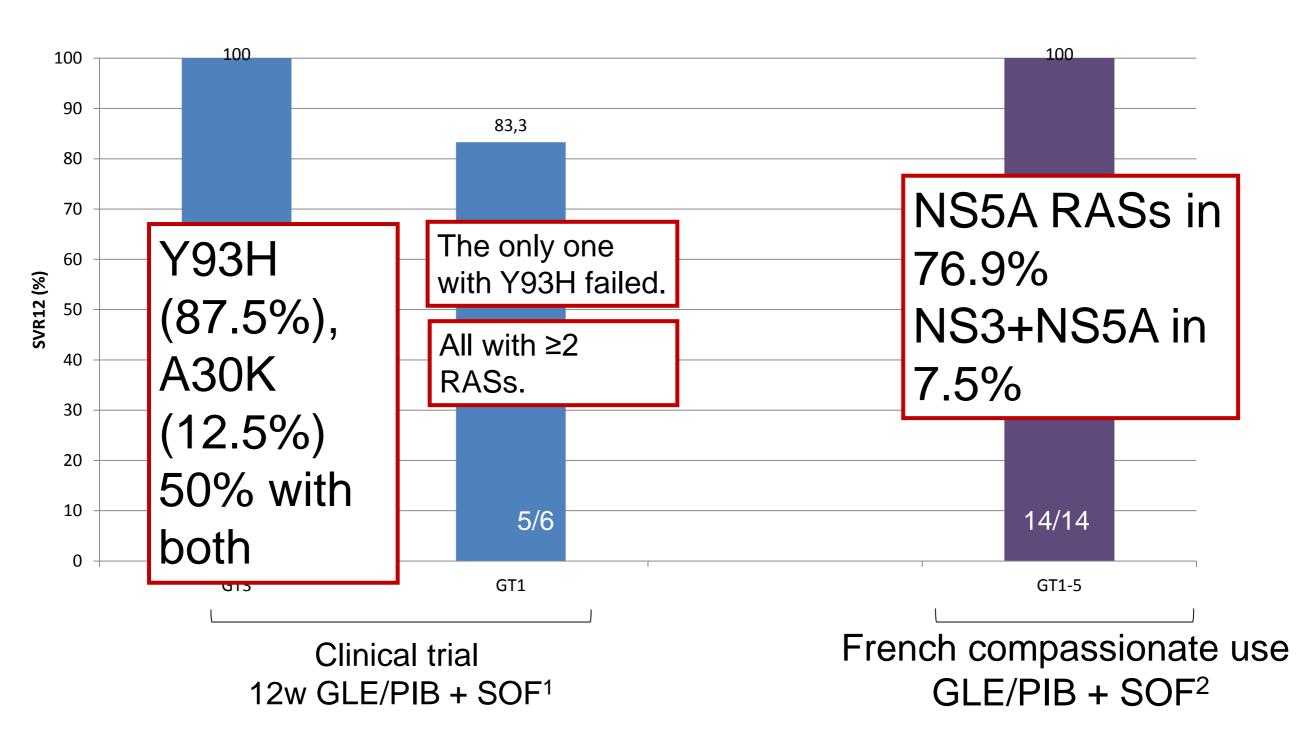
HCV genotypes/subtypes distribution within the Italian Resistance Database VIRONET C (N=2885 patients with an available sample amplified)

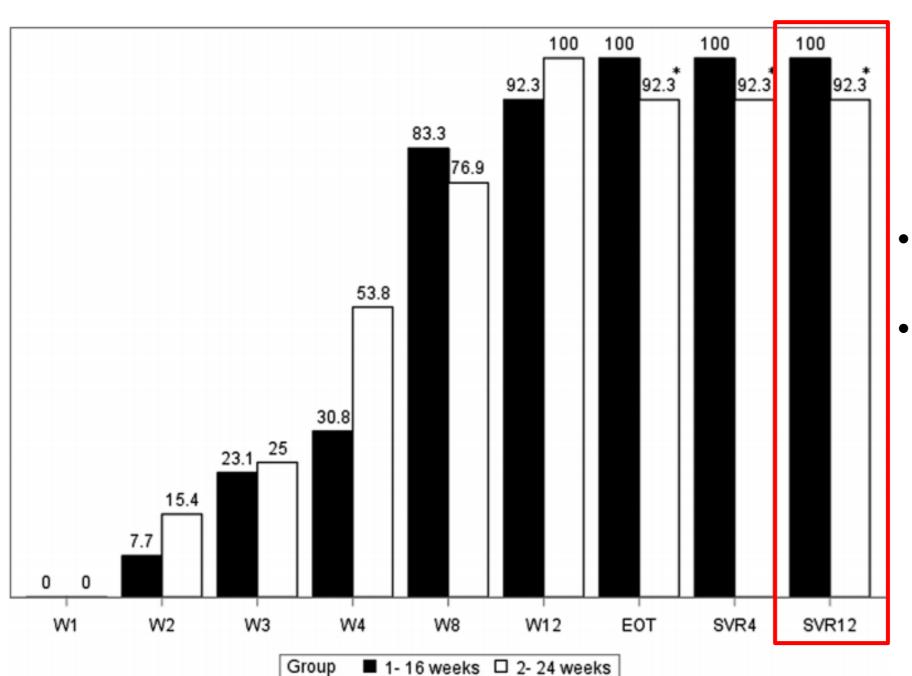
Natural NS5A RASs prevalence in **NS5A-naive** patients in Italy:


NS5A RASs prevalence in **NS5A-experienced** patients in Italy:

¹Bertoli A et al., Sci Rep. 2018 Jun 12;8(1):2989,200 Ceccherini Silberstein F. et al., Hepatology. 2016 Mar;63(3):1058-9; ³Di Maio V.C. et al., EASL 2019; ⁴Degasperi E. et al., EASL 2019

What to expect in a DAA failing patient, when considering


retreatment

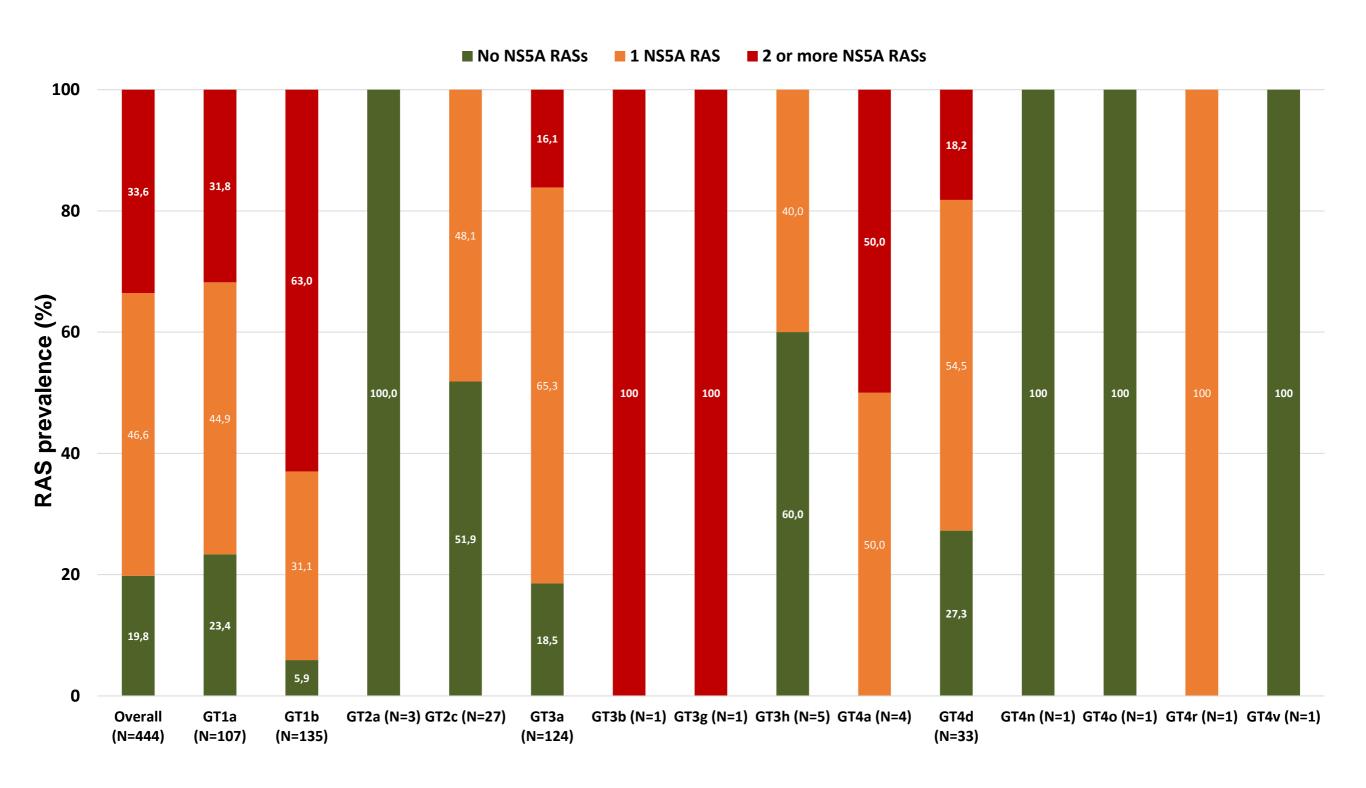


Sofosbuvir + Glecaprevir/Pibrentasvir in patients with difficult to treat HCV infection. Clinical trial and real-life

Retreatment with Grazoprevir/Elbasvir + Sofosbuvir led to very high SVR rates in GT1 and GT4 patients: ANRS HC34 REVENGE

- 26 patients
 underwent 16 or 24
 weeks of treatment,
 always with
 ribavirin.
- 50% with cirrhosis.
- 92% with NS5A RASs, most commonly Y93H.

*The failure is the deceased patient.



Within the Italian VIRONET-C, a total of 444 patients who failed a NS5A inhibitor-containing regimen recommended by the 2016 or 2018 European Association for the Study of the Liver (EASL) guidelines, and with a valid resistance test at failure, were analyzed.

DAA	HCV genotype/subtype														_ Total
regimen	1a	1b	2 a	2c	3a	3b	3g	3h	4a	4d	4n	40	4r	4v	- iotai
DCV+SOF ±RBV	8	5		7	86	1		2		3		1			113
2D ±RBV	1									3	1				5
LDV/SOF ±RBV	36	67			4				4	21				1	133
$3D \pm RBV$	38	32		3	12			3							88
EBR/GZR ±RBV	5	27								5					37
GLE/PIB	7	1	1	11	9					1					30
SOF/VEL ±RBV	12	3	2	6	13		1_						1		38
Total	107	135	3	27	124	1	1	5	4	33	1	1	1	1	444

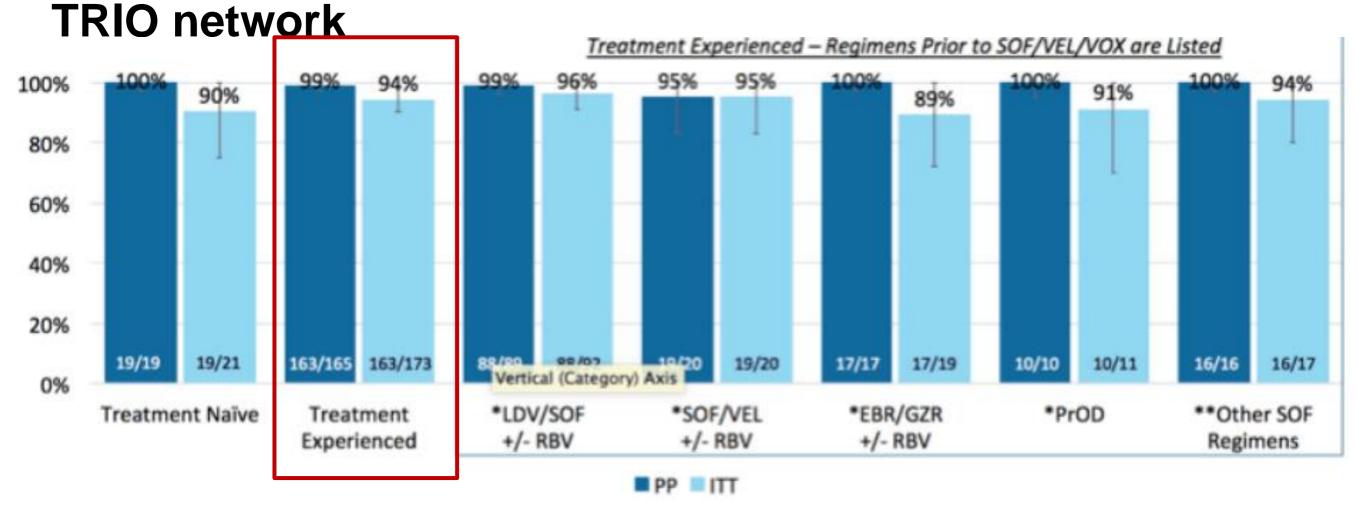
Complex NS5A RASs patterns were common across HCV-genotypes and subtypes ...

Within VIRONET-C, 125 NS5A-experienced patients were retreated with a second generation DAA regimen

	Males, N(%)	90 (72.0)
	Age (years), Median (IQR)	57 (50-64)
	1 a	34 (27.2)
	1b	42 (33.6)
HCV geno/subtype	2a/c	8 (6.4)
	3a/b/g	29 (23.2)
	4a/d/n/o	12 (9.6)
	HCC, N (%)	7 (5.6)
	HIV coinfection, N (%)	10 (9.9)
	Cirrhotic patients, N (%)	61 (49.6)
	IFN experienced ^a , N (%)	35 (47.3)
	DCV+SOF \pm RBV	27 (21.6)
	2D	1 (0.8)
	SOF/LDV ±RBV	36 (28.8)
Prior DAA experience	$3D \pm RBV$	26 (20.8)
•	EBR/GZR \pm RBV	20 (16.0)
	SOF/VEL ±RBV	8 (6.4)
	GLE/PIB	7 (5.6)

^a3 patients had previously failed a treatment with telaprevir or boceprevir

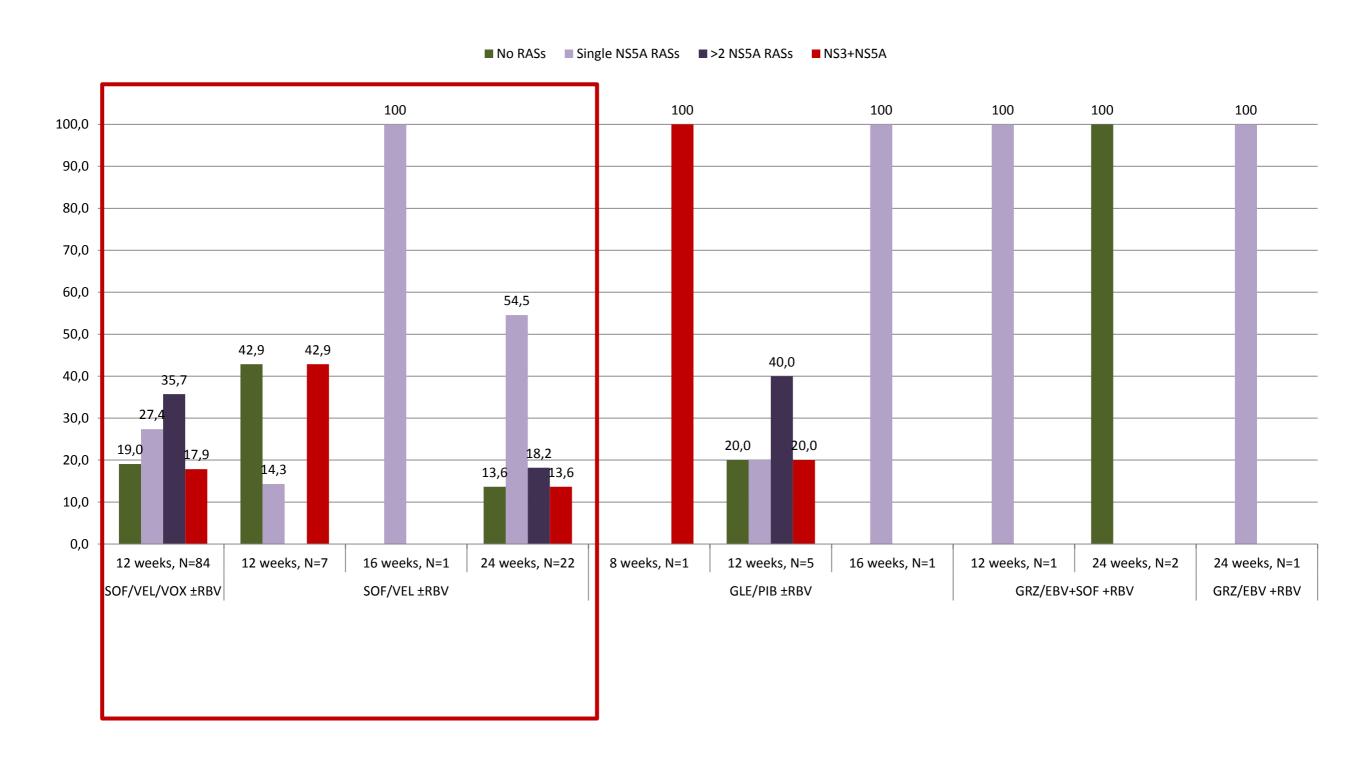
²D, paritaprevir/ritonavir, ombitasvir; 3D, paritaprevir/ritonavir, ombitasvir and dasabuvir; DAA, direct-acting antiviral; HCC, hepatocellular carcinoma; IQR, interquartile range


Within VIRONET-C, 125 NS5A-experienced patients were retreated with a second generation DAA regimen

		Ribavirin		HCV	genotype,	N(%)		
DAA r	regimen	association, N(%)	1 a	1b	2	3	4	SVR ₁₂ *, N(%)
SOF/VEL/VOX	12 weeks, N=84	14 (16.7)	23 (27.4)	28 (33.3)	6 (7.1)	17 (20.2)	10 (11.9)	45 (90.0)
	12 weeks, N=7	1 (14.3)	3 (42.9)	1 (14.3)	2 (28.6)	-	1 (14.3)	5 (71.4)
SOF/VEL	16 weeks, N=1	-	-	-	-	1 (100)	-	1 (100)
	24 weeks, N=22	14 (63.6)	4 (18.2)	8 (36.4)	-	9 (40.9)	1 (4.5)	15 (78.9)
	8 weeks, N=1	-	-	1 (100)	-	_	-	1 (100)
GLE/PIB	12 weeks, N=5	1 (20.0)	1 (20.0)	3 (60.0)	-	1 (20.0)	-	5 (100)
	16 weeks, N=1	-	-	-	-	1 (100)	-	1 (100)
CD7/FDV: COF	12 weeks, N=1	1 (100)	1 (100)	-	_	_	-	1 (100)
GRZ/EBV+SOF	24 weeks, N=2	2 (100)	1 (50.0)	1 (50.0)	-	_	-	
GRZ/EBV	24 weeks, N=1	1 (100)	1 (100)	-	-	-	-	1 (100)
Overall	N=125	30 (24.0)	26.8	34.1	4.9	29.3	4.9	75 (79.8)

^{*} Currently available for 94 patients

Effectiveness of the salvage therapy sofosbuvir/velpatasvir/ voxilaprevir (SOF/VEL/VOX) in chronic hepatitis C; clinical practice experience from the

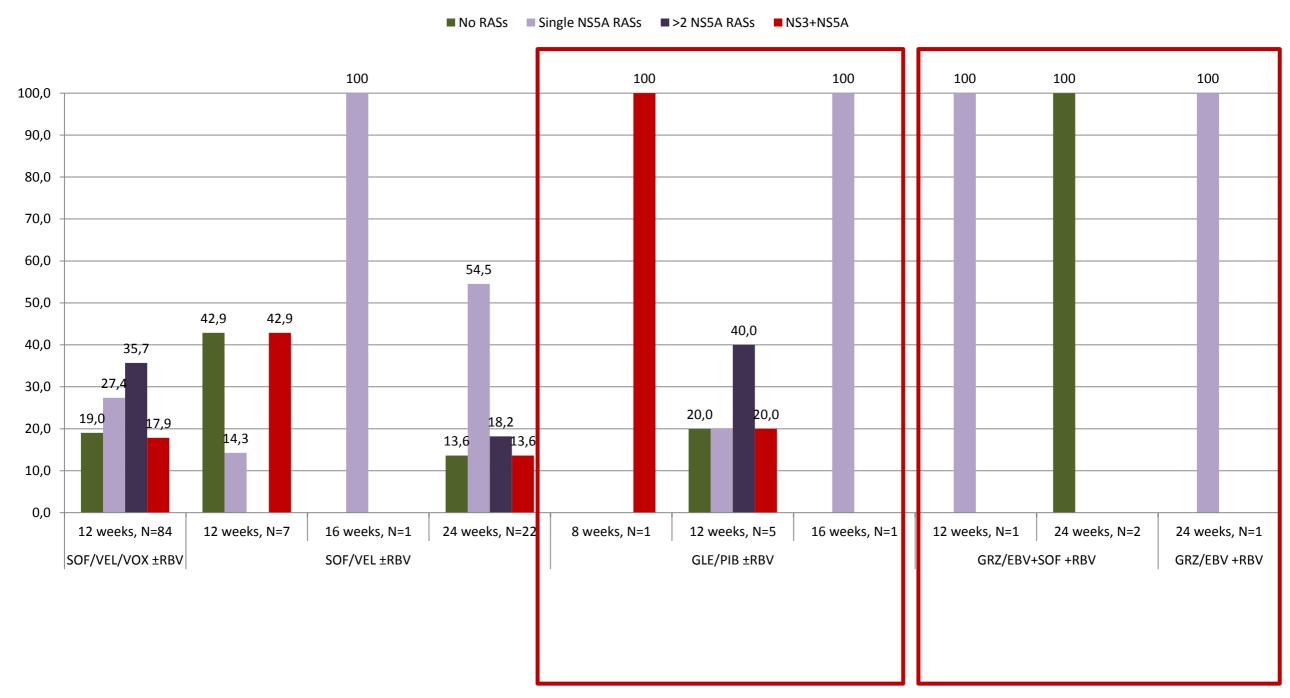


Within VIRONET-C, 125 NS5A-experienced patients were retreated with a second generation DAA regimen

		Ribavirin		HCV	genotype,	N(%)		
DAA r	regimen	association, N(%)	1 a	1b	2	3	4	SVR ₁₂ *, N(%)
SOF/VEL/VOX	12 weeks, N=84	14 (16.7)	23 (27.4)	28 (33.3)	6 (7.1)	17 (20.2)	10 (11.9)	45 (90.0)
	12 weeks, N=7	1 (14.3)	3 (42.9)	1 (14.3)	2 (28.6)	-	1 (14.3)	5 (71.4)
SOF/VEL	16 weeks, N=1	-	-	-	-	1 (100)	-	1 (100)
	24 weeks, N=22	14 (63.6)	4 (18.2)	8 (36.4)	-	9 (40.9)	1 (4.5)	15 (78.9)
	8 weeks, N=1	-	-	1 (100)	-	-	-	1 (100)
GLE/PIB	12 weeks, N=5 16 weeks, N=1	1 (20.0) -	1 (20.0) -	3 (60.0) -	-	1 (20.0) 1 (100)	-	5 (100) 1 (100)
GRZ/EBV+SOF	12 weeks, N=1 24 weeks, N=2	1 (100) 2 (100)	1 (100) 1 (50.0)	- 1 (50.0)	-	-	-	1 (100)
GRZ/EBV	24 weeks, N=1	1 (100)	1 (100)	-	-	-	-	1 (100)
Overall	N=125	30 (24.0)	26.8	34.1	4.9	29.3	4.9	75 (79.8)

^{*} Currently available for 94 patients

RAS profile at baseline of retreatment


11 patients failed retreatment: 5 with SOF/VEL/VOX and 6 with VEL+SOF+/-RBV

ID /Do-iousto	Cirrela a ai a	HCV	Previous DAA	NS3 resis	tance	NS5A	resistance
ID/Paziente	Cirrnosis	genotype	regimen	Baseline	Failure	Baseline	Failure
SOF/VEL/VOX	for 12 we	eks					
3806	yes	1b	3D	-	n.a.	-	n.a.
663	yes	4d	LDV/SOF	D168V	n.a.	M31V+Y93H	n.a.
3817	yes	1a	LDV/SOF	-	n.a.	Q30R+L31M	n.a.
6971	yes	1a	LDV/SOF	Q80K	n.a.	-	n.a.
10125	no	1 a	VEL/SOF	Q80K	n.a.	-	n.a.
VEL/SOF for 1	12 weeks						
2649	no	1b	3D	Y56H+D168V	n.a.	Y93H	n.a.
4827	no	2c	DCV+SOF	-	n.a.	-	n.a.
VEL/SOF plus	RBV for 24	weeks					
933	yes	1a	LDV/SOF	Q80K	Q80K	Q30K+A92T+Y93H	Q30K+ L31M +A92T+Y93H
1641	yes	1a	LDV/SOF	-	-	L31M	L31V
2669	yes	1b	LDV/SOF	-	n.a.	L31I+Y93H	n.a.
3767	yes	3a	DCV+SOF	-	-	Y93H	Y93H

RAS profile at baseline of retreatment

Within VIRONET-C, 125 NS5A-experienced patients were retreated with a second generation DAA regimen

		Ribavirin		HCV _{	genotype,	N(%)		
DAA r	regimen	association, N(%)	1 a	1b	2	3	4	SVR ₁₂ *, N(%)
SOF/VEL/VOX	12 weeks, N=84	14 (16.7)	23 (27.4)	28 (33.3)	6 (7.1)	17 (20.2)	10 (11.9)	45 (90.0)
	12 weeks, N=7	1 (14.3)	3 (42.9)	1 (14.3)	2 (28.6)	-	1 (14.3)	5 (71.4)
SOF/VEL	16 weeks, N=1	-	-			1 (100)	-	1 (100)
	24 weeks, N=22	14 (63.6)	4 (18.2)	8 (36.4)	-	9 (40.9)	1 (4.5)	15 (78.9)
GLE/PIB	8 weeks, N=1 12 weeks, N=5	- 1 (20.0)	- 1 (20.0)	1 (100) 3 (60.0)	-	- 1 (20.0)	-	1 (100) 5 (100)
	16 weeks, N=1	-	-	-	-	1 (100)	-	1 (100)
GRZ/EBV+SOF	12 weeks, N=1	1 (100)	1 (100)	-	-	-	-	1 (100)
•	24 weeks, N=2	2 (100)	1 (50.0)	1 (50.0)	-	-	-	
GRZ/EBV	24 weeks, N=1	1 (100)	1 (100)	-	-	-	-	1 (100)
Overall	N=125	30 (24.0)	26.8	34.1	4.9	29.3	4.9	75 (79.8)

^{*} Currently available for 94 patients

EASL Recommendations

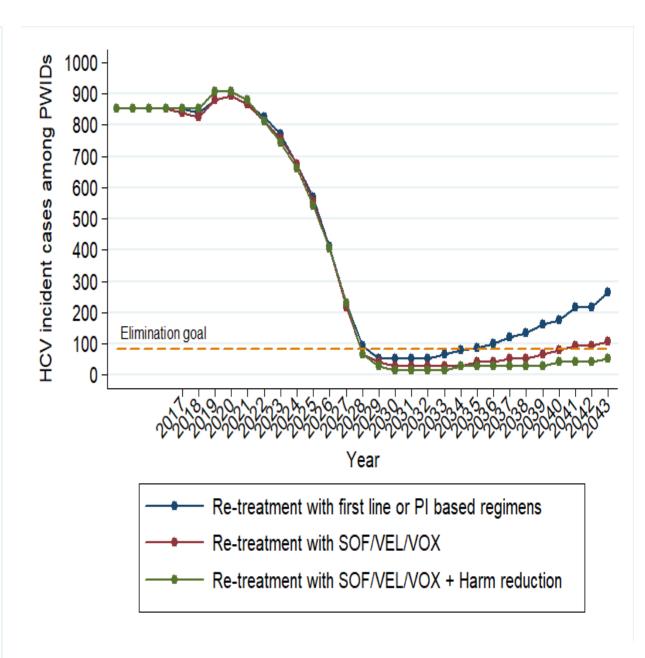
Retreatment of DAA failures

Retreatment strategy depends on initial regimen

Recommendations Grade of evi	denc	е
After failure of PEG-IFN α + RBV, SOF + PEG-IFN α /RBV or SOF + RBV • Retreat according to recommendations for TE patients, by HCV genotype	А	1
HCV resistance testing after failure of any DAA-based regimen (excluding regimens with	В	2
SOF as the only DAA) is a userul guide to retreatment		
After failure of DAA (PI and/or NS5A inhibitor)-containing regimen		
First-line retreatment		
 SOF/VEL/VOX for 12 weeks (without cirrhosis/with compensated cirrhosis) 	Α	1
 SOF/VEL + RBV* for 24 weeks (decompensated cirrhosis) 	В	2
 Patients with predictors of poor response, SOF + GLE/PIB for 12 weeks: 	В	2
 Advanced liver disease 		
 Multiple courses of DAA-based treatment 		
Complex NS5A RAS profile		
 Very difficult-to-cure patients:[†] SOF/VEL/VOX + RBV or SOF + GLE/PIB + RBV for 12 weeks or for 16 or 24 weeks 	С	2

^{*}Daily weight-based RBV (1,000 mg or 1,200 mg in patients <75 kg or ≥75 kg, respectively); start RBV at a dose of 600 mg daily and adjust dose depending on tolerance;

[†]Patients with NS5A RASs who failed twice to achieve SVR after a combination regimen including a PI and/or an NS5A inhibitor EASL CPG HCV. J Hepatol 2018;69:461–511.


Is There a Risk for Multi-Resistant HCV Spread?

60% CHC prevalence

CHC Prevalence

Population prevalence (%) Year Susceptible Infected Resistant Infections

HCV Incident cases

Gkountas I et al, EASL 2019

In nosocomial HCV transmission-clusters, the NS5A-RAS Y93H was often transmitted and distributed differently within the same transmission-clusters, independently by the IL-28-polymorphism

Cluster					RAS					Others Mutations						
HCV	Pt	HCV Infection	HCV-RNA (Ulimi)	IL 28	NS3 Sanger	NS5B Sanger	NS5A Sanger	NS5A NGS	FREQ.	NS3 Sanger	NS5A Sanger	NS5A NGS	NS5B Sanger			
	Pt1	Acute	3.270	тс	None	None	үэзн	Ү 93Н	99.7%	V48I, V51A, A666, T72I, P86Q, K87A, V132I, F147S, V170I, S174T (5-180aa)	K6R, 517T, K26R, L34V, L37F, K78R, R123QR, V164AE, V174T, Q176M (1-1848a)	K6R, S17T, K26R, L34V, L37F, K78R, V164E, V174T, Q176M, P206K, S207A, H208T, I209C, A211T (1-211 aa)	T181N, 5210A, C2135 (153-337aa)			
СТ1	Pt2	Chronic	2.820.000	cc	None	None	үэзн	Y93HY	97.8%	V48I, V51A, A66G, T72I, P86Q, K87A, V132I, F147IS, V170I, S174T (1-180aa)	K6R, 5175T, K26R, L34V, L37F, G49EG, K78R, V164A, V174T, Q176M (L-211aa)	KGR, VBIV, S175T, K26KR, L34V, L37FL, G49EG, 163IL, K78R, 98CS, N105NS, R108KR, A114AS, N137NS, V138IMV, A146AT, V164AE, V174T, Q176MT (1-213aa)	\$19NS, M57L, K81R, Q90K, R98K, N110NS V116I, N117KN, K124E, Q127L, T181N, \$210A, C213RS, \$231NS, T377S, C451H, A513S, R531K (1-540aa)			
	Pt3	Chronic	2.340.000	a	\$122N	None	ү93Нү	үэзнү	32.9%	57A, V48I, Y56F, A66G, P86G, K87S, V132I, F147S, A150V (2-180aa)	53T, K6R, S17T, 134V, K44R, Q54H, T56IT, T64A, H85R, T122V, M133MV, V138LV, R157QR, V164A, V174T (1-2134a)	S3T, K6R, S17T, L34V, K44R, DSODE, IS2DINV, QS4H, TS6IT, T64A, H85R, A92AT, T122AV, V124GV, M133MV, V138LV, R157QR, V164A, V174T (1-21344)	M57L, VBS1V, Q90K, Q127L, N206K, K209A A252AV, T377S, A513S, T520I, K523MR (1-548as)			
СТ2	Pt4	Acute	2.090	тс	5122N	None	None	None	None	V48I, Y56F, A66G, P86Q, 8875, V132I, F1475, V17OI (15-180aa)	\$31, K6R, \$171, L34V, K44R, Q54H, T64A, H85R, T122V, V138L, R157Q, V164A, V174T (1-1873a)	53T, K6R, 517T, L34V, K44R, Q54H, T64A, H85R, T122V, V124GV, V138L, R157Q, V164A, V174T (1-213aa)	N206K, K209A, A252V, T3775, I424V, M426T, A5135, T520I, K523R (151-538aa)			
	Pt5	Acute	165	сс	\$122N	None	None	None	None	V481, Y56F, A66G, P86Q, 16875, V132I, F1475, V170I (15-180ae)	53T, K6R, S17T, L34V, K44R, Q54H, T64A, H85R, T122V, V138I, R157Q, V164A, V174T, C190CG (1-196aa)	S3T, K6R, V15AV, S17T, P32PS, L34V, K44R, Q54P, A61AV, T64A, T83MT, H85R, T122MV, V124GV, G132AG, V138L, R157Q, V164A, V174T, L199I (1-213aa)	N206K, K209A, A252V, R254KR, E258EQ, T3775, A5135, T520I, K523R, S549G, V552/ (151-562eq)			
	Pt6	Chronic	1.800.000	тс	None	None	None	None	None	\$7A, C16CW, V48I, 561A, A66G, P86Q, K87AS, F147S (1-180aa)	KGR, 517T, L34V, L37F, T56I, K78R, T79A, V164A, V174T, L183V, 52015T, M202MR, T213AT (1-2134a)	K6R, S17AT, L34V, L37FL, Y43FY, Q54HQ, T56IT, I63FL, K78R, T79A, T83MT, N105NS, R108KR, V164AT, V174T, L183V, A197AT, T213AT (1-212aa)	A155, M57L, Q90K, N117R, R120N, Q127L, T130N, F162Y, G198K, N206NS, C213S, R254K, T377S, V405L, Q464E, V499T, A513S, R531K, S549G (1-565a ba)			
стз	Pt7	Chronic	577,000	сс	None	None	Y93H	үүзн	99.65%	57A, V481, V51A, 561A, A666, T721, P86Q, K87A, 5122G, F1475, V1701 (1-181ea)	KGR, S17T, L34V, L37F, K44R, G49EG, Q54H, K78R, H85N, V138I, V164A, V174T, Q176L, L183V (1-194 as)	K6R, S17T, L34V, F36FL, L37F, K44R, G49EG, Q54H, T56IT, T64AT, V75AV, K78R, H85MS, V124GV, F127FS, V138, K139KR, V154A, V174T, Q176L, Q181HQ, L183V [1-2L548]	A155, M57L, Q90K, V116I, N117R, R120N, Q127L, T130N, V147IV, F162Y, S189PS, G198KR, C213S, R254K, T377S, V406IV, A421V, I424V, T427P, Q464E, V499T, A513S, T520MT, Q544R, S549G, L564V, S565P (1-5694a)			
	Pt9	Chronic	94,600	СС	None	None	None	None	None	57A, L14F, V48I, V51A, 561A, A66G, P86Q, K87A, F1475, 5174A (1-180aa)	K6R, S17T, L34V, L37F, Q54H, V75A, K78R, T83M, Y161H, V164A, V174T (1-185as)	K6R, 112IL, 517T, K26ME, L34V, P35LP, L37F, Q54H, V75A, K78R, C80CR, T83M, H85CHRY, A92AS, T99AT, P102LP, R10MKR, V124GV, Y161H, V164A, V174T, A197AT, P206K, 5207A, H208T, I209C, A211T (1-211a4)	A155, M57L, Q90K, N1105, V116I, N117R, R120N, Q127L, F162Y, K270R, T312S, L314S, V315A, A333AV, S335N, T377S, V405I, K441Q, Q464E, V499T, A513S, K535R, 5549G (1-568aa)			
CT4	Pt8	Chronic	hronic 219,000 TC None Nor		None	R30Q L31M Y93H	R30Q L31M Y93H	98.8% 98.8% 99.1%	V481, AGGG, P86Q, K87A, F1475, A150V, H53V (1-180aa)	KGR, S17T, L34V, L37F, Q54H, K78R, R123Q, V124I, M133V, V164A, E171Q, V174T, Q176I, T204TP (1-210m)	K6R, S17T, L34V, L37F, Q54H, N69NT, K78R, T95MT, R108KR, R123Q, V124I, M133MV, K139KR, V164A, E171Q, V174T, Q1764, A197T, L199V (1-213aa)	A395, M57L, R65Q, Q90K, K106KR, S113G, Q127L, E131N, I134L, F162Y, S231N, I262V T377S, A513S, R531K (1-568au)				
	Pt10	Acute	163	cc	None	None	R30Q L31M Y93H.	R30Q L31M Y93H	99.4% 99.4% 97.6%	V481, A56G, P86Q, K87A, F1475, A15OV, I153V (1G-180as)	K6R, S17T, L34V, L37F, Q54H, K78R, R123Q, V124, M133V, V164A, E171Q, V174F, Q176LQ (1-177aa)	66R, S17T, L23LP,, L34V, L37F, (54H, K78R, R123Q, Y124L, 4133V, G155EG, V164A, E171Q, 174T, Q176L, A197T, L199V L-205aa)	F162Y, 5231N, 1262V, T3775, T403AT, A513S, R531K (153-550w)			

Le ultime evidenze dei congressi

- Real life = trial registrativi
- Due opzioni pangenotipiche nella pratica clinica coporono pazienti differenti
- Screening universale in Italia > è più sostenibile se graduale per coorti succesive
- Ottimizzazione: meglio meno visite ma non biosgna sagerare
- Off label: corto è bello ma se l'immunità innata funziona
- Eterogeneità virale: ha sicuramente un ruolo nell'epoca della taglia unica pangenotipica
 - Per pazienti da aree esotiche
 - Per il ritrattamento
 - Per evitare possibili epidemie di HCV XDR o PDR